| 18 PANCURONIUM AND ROCURONIUM ANALYSIS BY LCMS | Page 1 of 5                   |
|------------------------------------------------|-------------------------------|
| Division of Forensic Science                   | Amendment Designator:         |
| TOXICOLOGY TECHNICAL PROCEDURES MANUAL         | Effective Date: 31-March-2004 |

#### 18 PANCURONIUM AND ROCURONIUM ANALYSIS BY LCMS

#### 18.1 Summary

18.1.1 Quaternary nitrogen muscle relaxants (pancuronium and rocuronium) are extracted from biological samples using acetonitrile precipitation, solid phase extraction (SPE) and analyzed by high performance liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS). Pancuronium, rocuronium and the internal standard, verapamil, are extracted and analyzed simultaneously. LC-ESI-MS analysis is achieved with a 10-90% acetonitrile gradient containing 0.1% trifluoroacetic acid.

## 18.2 Specimen Requirements

18.2.1 2 mL blood, biological fluid or tissue homogenate.

## 18.3 Reagents and Standards

- 18.3.1 Ammonium carbonate
- 18.3.2 Ammonium acetate
- 18.3.3 Methanol
- 18.3.4 Acetonitrile
- 18.3.5 Hexane
- 18.3.6 Pancuronium bromide (Pavulon®, Baxter, 1 mg/mL)
- 18.3.7 Pancuronium bromide (Sigma)
- 18.3.8 Rocuronium bromide (Zemuron®, Organon, 10 mg/mL)
- 18.3.9 Verapamil hydrochloride (e.g. Alltech)
- 18.3.10 Trifluoroacetic acid
- 18.3.11 Glacial Acetic Acid
- 18.3.12 Potassium hydroxide

#### 18.4 Solutions, Internal Standards, Calibrators and Controls

- 18.4.1 1.0 M Acetic Acid: Pipet 57.5 mL glacial acetic acid into a 1L volumetric flask. QS to volume with dH<sub>2</sub>O.
- 18.4.2 Ammonium Acetate Buffer (pH 5.0, 50mM): Weigh 3.85 g ammonium acetate. Transfer to 1 L volumetric flask and add approximately 900 mL dH<sub>2</sub>O. Adjust pH to 5.0 with 1.0 M acetic acid. QS to volume with dH<sub>2</sub>O.
- 18.4.3 5.0 M Potassium hydroxide: Weigh 28 g potassium hydroxide. Transfer to 100 mL volumetric flask and QS to volume with  $dH_2O$ .
- 18.4.4 Ammonium Carbonate Buffer (pH 9.3, 0.01M): Weigh 0.47 g ammonium carbonate. Transfer to 500 mL volumetric flask and add approximately 450 mL dH<sub>2</sub>O. Adjust pH to 9.3 with 5 M potassium hydroxide. QS to volume with dH<sub>2</sub>O.

| 18 PANCURONIUM AND ROCURONIUM ANALYSIS BY LCMS | Page 2 of 5                   |
|------------------------------------------------|-------------------------------|
| Division of Forensic Science                   | Amendment Designator:         |
| TOXICOLOGY TECHNICAL PROCEDURES MANUAL         | Effective Date: 31-March-2004 |

- 18.4.5 0.1M acetic acid in methanol: Pipet 10 mL 1.0 M acetic acid into a 100 mL volumetric flask. QS to volume with methanol. Prepare fresh daily.
- 18.4.6 Working standard solutions for pancuronium and rocuronium
  - 18.4.6.1 100 μg/mL pancuronium/rocuronium working solution: Pipet 1 mL of 1 mg/mL stock solution of pancuronium and 100 μL of 10 mg/mL stock solution of rocuronium into a 10 mL volumetric flask. QS to volume with acetonitrile. Prepare fresh daily.
  - 18.4.6.2  $10 \mu g/mL$  pancuronium/rocuronium working solution: Pipet 1 ml of 0.1 mg/mL pancuronium/rocuronium working solution into a 10 mL volumetric flask. QS to volume with acetonitrile. Prepare fresh daily.
- 18.4.7 Quality Control (QC) solution
  - 18.4.7.1 100 μg/mL pancuronium/rocuronium QC solution: Pipet 100 μL of 1 mg/mL stock solution of pancuronium and 10 μL of 10 mg/mL stock solution of rocuronium (both from different manufacturer or lot number than standards). Add 890 μL acetonitrile. Prepare fresh daily.
- 18.4.8 Internal standard working solution
  - 18.4.8.1 10  $\mu$ g/mL verapamil: Pipet 100  $\mu$ L of 1 mg/mL verapamil stock solution into 10 mL volumetric flask and QS to volume with acetonitrile. Store in freezer.
- 18.4.9 Calibrators. To prepare the following calibration curve, pipet the following volumes into appropriately labeled 16 x 125 mm screw cap tubes
  - 18.4.9.1 Cal 1: 10 mg/L pancuronium/rocuronium: 20  $\mu$ L each of 1 mg/mL pancuronium and rocuronium 18.4.9.2 Cal 2: 5 mg/L pancuronium/rocuronium: 10  $\mu$ L each of 1 mg/mL pancuronium and rocuronium 18.4.9.3 Cal 3: 2 mg/L pancuronium/rocuronium: 400  $\mu$ L of 0.01 mg/mL pancuronium/rocuronium solution 18.4.9.4 Cal 4: 1 mg/L pancuronium/rocuronium: 200  $\mu$ L of 0.01 mg/mL pancuronium/rocuronium solution 18.4.9.5 Cal 5: 0.5mg/L pancuronium/rocuronium: 100  $\mu$ L of 0.01 mg/mL pancuronium/rocuronium solution 20  $\mu$ L of 0.01 mg/mL pancuronium/rocuronium solution 20  $\mu$ L of 0.01 mg/mL pancuronium/rocuronium solution
  - 18.4.9.7 Add 2 mL blank blood to each tube.
- 18.4.10 Pancuronium and rocuronium control (QC)
  - 18.4.10.1 1mg/L pancuronium/rocuronium QC: Pipet 200 μL of 0.01 mg/mL pancuronium/rocuronium QC solution into appropriately labeled 16 x 125 mm screw cap tube and add 2 mL blank blood.
  - 18.4.10.2 Negative control: blood bank blood (or equivalent) previously determined not to contain rocuronium, pancuronium or verapamil.

# 18.5 Apparatus

- 18.5.1 Test tubes, 16 x 125 mm round bottom, screw cap with Teflon caps
- 18.5.2 Test tubes, 16 x 114 mm glass centrifuge, conical bottom
- 18.5.3 Centrifuge capable of 2000-3000 rpm
- 18.5.4 Nitrogen evaporator with heating block
- 18.5.5 Vortex mixer

# 18 PANCURONIUM AND ROCURONIUM ANALYSIS BY LCMS Division of Forensic Science TOXICOLOGY TECHNICAL PROCEDURES MANUAL Effective Date: 31-March-2004

- 18.5.6 GC autosampler vials with inserts
- 18.5.7 Solid Phase Extraction manifold
- 18.5.8 Strata C18-E SPE columns (6 ml, bed volume 500 mg), Phenomenex
- 18.5.9 LC/MS: Agilent Model 1100 LC-MSD
- 18.5.10 LCMS Instrument Conditions. The following instrument conditions may be modified to adjust or improve separation and sensitivity.

## 18.5.10.1 Elution conditions:

18.5.10.1.1 Column: Agilent Hypersil BDS 125 mm X 3 mm, 3 μm particle size

18.5.10.1.2 Column thermostat: 35° C

18.5.10.1.3 Solvent A: Water with 0.1%Trifluoroacetic acid

18.5.10.1.4 Solvent B: Acetonitrile

18.5.10.1.5 Gradient elution, stop time: 13.00 min

| Time | Solv. B | Flow |
|------|---------|------|
| 0.00 | 10.0    | 0.65 |
| 8.00 | 90.0    | 0.65 |
| 9.00 | 10      | 0.65 |

## 18.5.10.2 Spray Chamber

Ionization Mode: Electrospray
 Gas Temperature: 350° C
 Drying Gas (N<sub>2</sub>): 12.0 L/min
 Nebulizer pressure: 35 psig
 Vcap (Positive): 4000 V

#### 18.5.11 Selected Ion Monitoring

18.5.11.1 Polarity: Positive

## 18.5.11.2 SIM parameters (quantitation ions)

Rocuronium ions: 358, 413, 487, <u>529</u>
Pancuronium ions: 412, 472, 571, <u>685</u>
Verapamil IS ions: 165, 303, <u>455</u>

#### 18.6 Procedure

- 18.6.1 Label 16 x 125 mm screw cap tubes appropriately (blank, calibrators, controls and case sample IDs).
- 18.6.2 Prepare calibrators and controls.

| 18 PANCURONIUM AND ROCURONIUM ANALYSIS BY LCMS | Page 4 of 5                   |
|------------------------------------------------|-------------------------------|
| Division of Forensic Science                   | Amendment Designator:         |
| TOXICOLOGY TECHNICAL PROCEDURES MANUAL         | Effective Date: 31-March-2004 |

- 18.6.3 Pipet 2 mL of each case specimen into appropriately labeled tubes.
- 18.6.4 Add 100 μL 0.01 mg/mL verapamil working internal standard solution to each tube. Vortex briefly.
- 18.6.5 Slowly, add dropwise 2 mL cold (freezer temperature) acetonitrile to each tube while vortexing. Continous vortexing, not mere mixing, is essential.
- 18.6.6 Vortex an additional 30 seconds.
- 18.6.7 Cap tubes.
- 18.6.8 Place tubes in freezer for at least 30 minutes to facilitate separation.
- 18.6.9 Centrifuge at approximately 2500 rpm for 15 minutes.
- 18.6.10 Transfer top (acetonitrile) layer to clean 16x125 mL tubes taking care not to transfer any lower layers.
- 18.6.11 Add 4 mL 0.01 M ammonium carbonate buffer to each tube. Vortex briefly.
- 18.6.12 Prepare C18-E SPE columns
  - 18.6.12.1 Add 2 mL methanol to each column. Aspirate slowly under vacuum (approx 1 mL/min).
  - 18.6.12.2 Add 4 mL ammonium carbonate buffer to each column. Aspirate slowly under vacuum.
- 18.6.13 Load buffered sample supernatants to columns. Aspirate slowly under vacuum.
- 18.6.14 Wash columns with 4 mL ammonium carbonate. Aspirate slowly under vacuum.
- 18.6.15 Repeat wash with 4 mL ammonium carbonate. Aspirate slowly under vacuum.
- 18.6.16 Add 500 μL hexane to each column. Aspirate. Dry the columns at > 10 inches of Hg for at least 10 minutes.
- 18.6.17 Elute drugs by adding 4 mL of freshly prepared 0.01M acetic acid in methanol. Collect eluants under gravity (no vacuum) into conical bottom screw cap tubes.
- 18.6.18 Evaporate eluants to dryness at approximately 50° C under nitrogen.
- 18.6.19 Reconstitute samples in 1 mL acetonitrile. Vortex briefly to ensure recovery of drugs from glass tube.
- 18.6.20 Evaporate samples again to dryness at approximately 50° C under nitrogen.
- 18.6.21 Reconstitute samples in 100 µL acetonitrile. Vortex briefly. Transfer to GC microvials.
- 18.6.22 Inject 5  $\mu$ L of each sample on LC/MS in the API-ES/SIM Mode

## 18.7 Calculation

18.7.1 Drug concentrations are calculated by linear regression analysis using the ChemStation software.

## 18.8 Quality Control and Reporting

18.8.1 See Toxicology Quality Guidelines

## 18.9 References

| PANCU  | JRONIUM AND ROCURONIUM ANALYSIS BY LCMS                                                                                                            | Page 5 of 5                                                                                                                                  |  |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|
|        | Division of Forensic Science                                                                                                                       | Amendment Designator:                                                                                                                        |  |
| TOXI   | COLOGY TECHNICAL PROCEDURES MANUAL                                                                                                                 | Effective Date: 31-March-2004                                                                                                                |  |
| 18.9.1 | CHM Kerskes, KJ Lusthof, PGM Zweipfenning and JP Franke. The Detect Nitrogen Muscle Relaxants in Biological Fluids and Tissues by Ion-Trap L       |                                                                                                                                              |  |
| 18.9.2 | C Ferenc, C Enjalbal, P Sanchez, F Bressolle, M Audran, J Martinez and Jl of Rocuronium in Human Plasma by LC-ESI-MS. <i>J Chrom A</i> 910: 61-67, | nchez, F Bressolle, M Audran, J Martinez and JL Aubagnac. Quantitative Determination Plasma by LC-ESI-MS. <i>J Chrom A</i> 910: 61-67, 2001. |  |
| 18.9.3 | M Zecevic, LJ Zivanovic and A Stojkovic. Validation of HPLC Method for Pavulon Injections. <i>J Chrom A</i> 949: 61-64, 2002.                      | c and A Stojkovic. Validation of HPLC Method for the Determination of Pancuronium in A 949: 61-64, 2002.                                     |  |
| 18.9.4 | L Gao, I Ramzan and B Baker. GCMS Assay for Rocuronium with Potent desacetylrocuronium, in Human Plasma. <i>J Chrom B</i> 757: 207-214, 2001.      | ial for Quantifying its Metabolite, 17-                                                                                                      |  |
| 18.9.5 | J Pearson and R Steiner, in-house development.                                                                                                     |                                                                                                                                              |  |
|        |                                                                                                                                                    |                                                                                                                                              |  |
|        |                                                                                                                                                    |                                                                                                                                              |  |
|        |                                                                                                                                                    |                                                                                                                                              |  |
|        |                                                                                                                                                    |                                                                                                                                              |  |
|        |                                                                                                                                                    |                                                                                                                                              |  |
|        |                                                                                                                                                    |                                                                                                                                              |  |
|        |                                                                                                                                                    |                                                                                                                                              |  |
|        |                                                                                                                                                    |                                                                                                                                              |  |
|        |                                                                                                                                                    |                                                                                                                                              |  |
|        |                                                                                                                                                    |                                                                                                                                              |  |
|        |                                                                                                                                                    |                                                                                                                                              |  |
|        |                                                                                                                                                    |                                                                                                                                              |  |
|        |                                                                                                                                                    |                                                                                                                                              |  |
|        |                                                                                                                                                    |                                                                                                                                              |  |
|        |                                                                                                                                                    |                                                                                                                                              |  |
|        |                                                                                                                                                    |                                                                                                                                              |  |
|        |                                                                                                                                                    |                                                                                                                                              |  |
|        |                                                                                                                                                    |                                                                                                                                              |  |